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Abstract
A DNA sequence can be identified with a word over the alphabet � =
{A,C,G, T }. An algebraic method is used to analyse DNA sequences
and their three-dimensional vector representation, and, via their geometric
representation, an equivalence relation on DNA sequences is introduced, and
the number of equivalence classes of sequences is counted. Finally, a kind of
inequality involving equivalent sequences’ entropy is proved.

PACS numbers: 87.14.Gg, 02.20.−a

1. Introduction

We are living in the era of the explosion of biological information. With the development of
the sequencing technique and the genome projects, the known sequences are accumulated at an
exponential rate with respect to time. Nucleic acids and proteins are all linear macromolecules
and thus can be expressed as linear sequences. A nucleic acid sequence is regarded as a string
over four bases (letters), adenine (A), cytosine (C), guanine (G) and thymine (T). Thus, a
nucleic acid sequence can be considered as a word w over the alphabet � = {A,C,G, T

(or U)}. This expression is called a letter sequence representation (LSR) or a DNA primary
sequence. A DNA primary sequence conserves its basic hereditary information. Therefore,
the statistics and analysis for DNA primary sequences are important in bioinformatics.

Mathematical analysis of large volume genomic DNA sequence data is one of the
challenges for bio-scientists. In order to give a visual characterization of DNA sequences,
many attempts have been made [3, 4, 6–8, 12]. Graphical representation of a DNA sequence
provides a simple way of viewing, sorting and comparing various gene structures. For example,
Zhang [9] proposed a three-dimensional vector representation (3DVR) for a DNA primary
sequence, which is called a Z-curve. This representation is very useful in studies of nucleotide
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distribution and composition, especially in comparative studies of similarity/dissimilarity of
DNA sequences [4, 6–8, 12]. In a series of works of Zhang et al [9–12], some properties of
the Z-curve are investigated.

Using algebraic methods to analyse DNA sequences has been a subject of research in the
past [1, 2, 5]. In this paper, we attempt to treat the Z-curves from algebraic and combinatorial
points of view based on Zhang’s works.

The distribution of this paper is as follows. In section 2, we introduce some preliminary
knowledge relating to the rest of this paper. Then, in section 3, we give some operations on
Z-curves, and obtain some properties of the DNA curve using group S4 acting on the DNA
curve. In section 4, we define an equivalence relation to the Z-curves, and count the number of
the equivalence classes of DNA sequences. In addition, we prove a kind of inequality which
relates to the equivalent sequences’ entropy.

2. Preliminary

In DNA sequences, the four bases A,C,G, T can be divided into two classes according to
their chemical structures, i.e.,

Bases

{
purine R = A,G

pyrimidine Y = C, T .

The bases can be also divided into another two classes,

Bases

{
amino group M = A,C

keto group K = G,T .

In addition, the division can be made according to the strength of the hydrogen bond, i.e.,

Bases

{
strong H-bonds S = G,C

weak H-bonds W = A, T .

By the above classifications, a DNA primary sequence can be embedded into the three-
dimensional space as follows: assigning the six classes (purine, pyrimidine, amino group, keto
group, weak H-bond and strong H-bond) to the six directions in the coordinate system O-XYZ
associated with the positive and the negative x, y and z axes, such that purine, amino group
and weak H-bond correspond to the positive x, y and z axes, respectively, and pyrimidine, keto
group and strong H-bond correspond to the negative x, y and z axes, respectively.

For any positive integer n, let Dn denote the set of all DNA sequences of length n and
write D = ⋃

n�1 Dn.
Given a w ∈ D, by |w| we denote its length, that is the number of the letters in w. Suppose

|w| = n, i.e., w ∈ Dn. For 1 � i � n and L ∈ �, let Li(w) (or simply Li , for short) denote
the number of L occurring in the first i letters of w. By definition we have Ai +Ci +Gi +Ti = i

for i = 1, 2, . . . , |w|.
Now, we inspect w from 5′ to 3′ by stepping one base at a time. We start from the original

point O. Then, at every step, say the ith step, we obtain a point Pi(w) (or Pi for short) in the
coordinate system according to the number of six classes of bases. We thus obtain n points
P0 = O,P1, P2, . . . , Pn in the three-dimensional real space. The Z-curve is an appropriate
connection of them one by one. In [10], the coordinates of Pi (i = 1, 2, . . . , n) are expressed
by Ai, Ci,Gi and Ti as follows:


xi = 2(Ai + Gi) − i

yi = 2(Ai + Ci) − i

zi = 2(Ai + Ti) − i

(1)
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or equivalently,



Ai

Ci

Gi

Ti


 = i

4




1
1
1
1


 +

1

4




1 1 1
−1 1 −1
1 −1 −1

−1 −1 1





xi

yi

zi


 (2)

where xi, yi, zi ∈ [−i, i] and i ∈ {0, 1, . . . , n}. Recall that Ai + Ci + Gi + Ti = i. So
xi = 2(Ai + Gi) − i = (Ai + Gi) − (Ci + Ti), which is the difference of numbers of purine
and pyrimidine after the ith step inspection. yi and zi have similar interpretations.

Thus, from a DNA sequence w ∈ Dn we obtain a 3 × n matrix of the form

�(w) =

x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn




which is called a DNA sequence matrix.
Let Mn denote the set of all 3 × n DNA sequence matrices and write M = ⋃

n�1 Mn. It
is easy to see that � is a one-to-one correspondence between D and M.

For any v ∈ Dn and w ∈ Dm it is easy to see that vw ∈ Dn+m. Similarly, for A ∈ Mn and
B ∈ Mm we define

A ∗ B = (A,B ′)

where (A,B ′) is obtained by concatenating matrix A and matrix B ′ with B ′ obtained by
applying formula (3) for matrix B, as follows


x ′

i = xi + xA

y ′
i = yi + yA

z′
i = zi + zA

(3)

where (x ′
i , y

′
i , z

′
i ) and (xi, yi, zi) are the ith columns of B ′ and B, respectively, and (xA, yA, zA)

is the coordinate of termination of the Z-curve of A.

Proposition 2.1. Let v and w be in D. Then

�(vw) = �(v) ∗ �(w).

Proof. Let |v| = n1 and |w| = n2. Then |vw| = n1 + n2.

Set �(v) =

x ′

i

y ′
i

z′
i




1�i�n1

�(w) =

x ′′

i

y ′′
i

z′′
i




1�i�n2

�(vw) =

xi

yi

zi




1�i�n1+n2

.

For i ∈ [1, n1], xi = 2(Ai(v) + Gi(v)) − i, so xi = x ′
i . For i ∈ [n1 + 1, n1 + n2], set i =

n1+k. Then xi = 2(Ai(vw)+Gi(vw))−i = 2
(
An1(v)+Gn1(v)

)
+2(Ak(w)+Gk(w))−n1−k =

xn1 + x ′′
k . yi, zi have similar explanations. From (3), we have �(vw) = �(v) ∗ �(w). �

From (1) and (2) we also see an interesting property: the end point of the Z-curve of
a palindromic sequence must be on the Z-axis. In fact, since the number of base A (or C)
is equal to the number of base T (or G) in a palindromic sequence, we have An = Tn and
Cn = Gn. By (1) and the equation An + Cn + Gn + Tn = n, we obtain xn = yn = 0.
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3. Action of the symmetric group S4 on the Z-curves and the DNA matrices

Let S4 be the symmetric group on the letters A,C,G and T. Denoting the elements by products
of disjoint cycles, we have S4 = {I, (AC)(GT ), (AG)(CT ), (AT )(CG), (ACG), (GCA),

(ACT ), (T CA), (AGT ), (T GA), (CGT ), (T GC), (AC), (AG), (AT ), (CG), (CT ), (GT ),

(ACGT ), (ACT G), (AGCT ), (AGT C), (AT CG), (AT GC)}. Then, S4 acts on DNA
primary sequences in a normal way: given an α ∈ S4 and a DNA sequence v = v1v2v3 . . . ,
define α(v) = α(v1)α(v2)α(v3) · · ·.

In order to have a synchronous action on the DNA matrices, we define an isomorphic
embedding φ of S4 into O(3), the group of the orthogonal matrices of order three.

Since S4 is generated by (AC), (AG) and (AT ), we define

φ(AC) =

0 0 −1

0 1 0
−1 0 0


 φ(AG) =


1 0 0

0 0 −1
0 −1 0


 φ(AT ) =


 0 −1 0

−1 0 0
0 0 1


.

It is easy to see that (φ(AC))2 = (φ(AG))2 = (φ(AT ))2 = I3, the identity matrix, and their
determinants are all equal to −1; therefore, they represent reflection transformations in the
three-dimensional real space. So, they generate a group homomorphism from S4 into O(3).
It is easy to verify that the kernel of φ consists of I, that is, φ is an injective homomorphism,
i.e., an isomorphic embedding.

For an α ∈ S4 and a DNA matrix A ∈ M define α(A) = φ(α)A. Then S4 acts on the set
M satisfying the following properties.

Proposition 3.1. Let α ∈ S4 and P,Q ∈ M. Then

(1) α� = �α, and
(2) α(P ∗ Q) = α(P ) ∗ α(Q).

Proof. (1) Clearly, it suffices to verify the equation for α = (AC), (AG) and (AT ). Let
v ∈ Dn. Write

�(v) =

xi

yi

zi




1�i�n

=

2(Ai + Gi) − i

2(Ai + Ci) − i

2(Ai + Ti) − i




1�i�n

.

Recall that Ai + Ci + Gi + Ti = i. We have

φ(AC)�(v) =

−zi

yi

−xi




1�i�n

=

i − 2(Ai + Ti)

2(Ai + Ci) − i

i − 2(Ai + Gi)




1�i�n

=

2(Ci + Gi) − i

2(Ci + Ai) − i

2(Ci + Ti) − i




1�i�n

φ(AG)�(v) =

 xi

−zi

−yi




1�i�n

=

2(Ai + Gi) − i

i − 2(Ai + Ti)

i − 2(Ai + Ci)




1�i�n

=

2(Gi + Ai) − i

2(Gi + Ci) − i

2(Gi + Ti) − i




1�i�n

and

φ(AT )�(v) =

−yi

−xi

zi




1�i�n

=

i − 2(Ai + Ci)

i − 2(Ai + Gi)

2(Ai + Ti) − i




1�i�n

=

2(Ti + Gi) − i

2(Ti + Ci) − i

2(Ti + Ai) − i




1�i�n

.
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We thus obtain that

φ(α)�(v) =

2(α(A)i + α(G)i) − i

2(α(A)i + α(C)i) − i

2(α(A)i + α(T )i) − i




1�i�n

= �(α(v))

holds for every α ∈ S4, which yields the result.
(2) By condition we have that there are v,w ∈ D such that �(v) = P and �(w) = Q,

and α(vw) = α(v)α(w), which implies �(α(vw)) = �(α(v)α(w)). Then the result follows
from proposition 2.1 and (1). �

Given a v ∈ Dn let pi(v) denote the content of the bases A,C,G, T in the sequence,
respectively, that is, p1(v) = An/n, p2(v) = Cn/n, p3(v) = Gn/n and p4(v) = Tn/n.

Definition 3.2. Let v ∈ D. The information entropy of v is defined to be

H(v) = −
4∑

i=1

pi(v) log2 pi(v).

It is well known that H achieves its maximum value ln 4 when p1 = p2 = p3 = p4. By
definition we see that H is a symmetric real function of A,C,G and T on D. We then
immediately have the following result.

Proposition 3.3. H is an invariant quantity of the DNA primary sequence under the action
of S4.

The information entropy H of the DNA sequence shows a kind of information in the DNA
sequence. From the information theory point of view we know that the information of the
DNA sequence is an invariant quantity in S4 acting on this sequence. Thus, each permutation
in S4 may be interpreted as an operator in which the nucleotide text can be permuted to another
nucleotide text without loss of information. We can seek information through the S4 group
acting on this sequence by proposition 3.3.

4. Equivalence classes

We first introduce a relation on D.

Definition 4.1. Let v and w be two DNA sequences. Write v ∼ w if the terminal points of
the Z-curves of v and w are identical. Precisely, v ∼ w if and only if Pm(v) = Pn(w), where
m = |v| and n = |w|.

Obviously, ‘∼’ is an equivalence relation on D. By [w] we denote the set of all v ∈ D
such that v ∼ w and |v| � |w|.

Let us discuss the conditions that two DNA sequences are equivalent.
In the rest of this section, let w be a selected sequence in Dn and v an arbitrary DNA

sequence in Dm with m � n.
First, suppose m = n. From (1) and (2) we have that v ∼ w if and only if

An(v) = An(w), Cn(v) = Cn(w),Gn(v) = Gn(w) and Tn(v) = Tn(w). We thus immediately
obtain the following enumerative result.

Theorem 4.2. Suppose w ∈ Dn. Then the cardinality of the set [w] ∩ Dn equals(
n

An,Cn,Gn, Tn

)
= n!

An!Cn!Gn!Tn!
.
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Next, suppose m < n. Set X1 = An(w) − Am(v),X2 = Cn(w) − Cm(v),X3 =
Gn(w) − Gm(v) and X4 = Tn(w) − Tm(v). From (1) it follows that v ∼ w if and only if


X1 − X2 + X3 − X4 = 0
X1 + X2 − X3 − X4 = 0
X1 − X2 − X3 + X4 = 0

(4)

which implies that X1 = X2 = X3 = X4. Writing it as k, we have that An(w) =
Am(v) + k, Cn(w) = Cm(v) + k,Gn(w) = Gm(v) + k, Tn(w) = Tm(v) + k, and n = m + 4k.
We thus obtain

Theorem 4.3. Suppose w ∈ Dn. Then the cardinality of the set [w] equals
r∑

k=0

(
n − 4k

An − k, Cn − k,Gn − k, Tn − k

)

where r = min{An,Cn,Gn, Tn}.
Definition 4.4. Let w ∈ Dn and r = min{An,Cn,Gn, Tn}. Let K(w) be the set of all
sequences obtained by eliminating r A, r C, r G and r T in the sequence w. The sequences in
K(w) are called kernels of w. We call w a complete degeneracy sequence if K(w) consists of
the empty sequence, i.e., An(w) = Cn(w) = Gn(w) = Tn(w).

Obviously, K(w) ⊆ [w] and its elements are of the least length in [w]. But the converse is
not generally true. For example, let w = AACCGGT . Then v = CGA ∈ [w] but v �∈ K(w).

We now suppose v ∈ [w] and compare their entropies. From the above discussion we
know that An(w) = Am(v) + k, Cn(w) = Cm(v) + k,Gn(w) = Gm(v) + k, Tn(w) = Tm(v) + k

and n = m + 4k. From definition 3.2, we have

H(w) = −
(

Am + k

m + 4k
ln

Am + k

m + 4k
+

Cm + k

m + 4k
ln

Cm + k

m + 4k
+

Gm + k

m + 4k
ln

Gm + k

m + 4k

+
Tm + k

m + 4k
ln

Tm + k

m + 4k

)

H(v) = −
(

Am

m
ln

Am

m
+

Cm

m
ln

Cm

m
+

Gm

m
ln

Gm

m
+

Tm

m
ln

Tm

m

)
.

Theorem 4.5. Suppose v ∈ [w]. Then H(w) � H(v), and the equality holds if and only if
|v| = |w| or w is a complete degeneracy sequence.

This theorem has a direct corollary as follows.

Corollary 4.6. (1) All complete degeneracy sequences are of the largest entropy ln 4.
(2) If w is not a complete degeneracy sequence, then in [w], the kernels of w have the

minimal entropy, and, the longer the DNA sequence, the larger the entropy.

To prove theorem 4.5 we provide a more general result, stated as a lemma.

Lemma 4.7. Let a1 � a2 � · · · � an � 0 be arbitrary real numbers and write
a = a1 + a2 + · · · + an. Define

f (x) = −
n∑

i=1

ai + x

a + nx
ln

ai + x

a + nx
.

Then f (x) ≡ ln n if a1 = a2 = · · · = an. Otherwise, f (x) is a strictly increasing function in
[−an,∞).
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Proof. Note that limx→+0 x ln x = 0. Therefore, f (x) is continuous in [−an,∞) and
differentiable in (−an,∞). We have

D[f (x)] =
n∑

i=1

(
1 + ln ai+x

a+nx

)
(nai − a)

(a + nx)2

=
n∑

i=1

nai − a

(a + nx)2
+

n∑
i=1

(nai − a) ln ai+x

a+nx

(a + nx)2

= 1

(a + nx)2

n∑
i=1

(nai − a) ln
ai + x

a + nx

= 1

(a + nx)2

n∑
k=1


(n − k)

k∑
i=1

ai − k

n∑
j=k+1

aj


 (

ln
ak + x

a + nx
− ln

ak+1 + x

a + nx

)
.

Since n − k � 0 and

(n − k)

k∑
i=1

ai − k

n∑
j=k+1

aj � (n − k)kak − k(n − k)ak+1 � k(n − k)(ak − ak+1) � 0

it follows D[f (x)] � 0. The equality holds iff a1 = a2 = · · · = an. This completes the proof.
�

From this lemma theorem 4.5 follows by taking n = 4 and x = k.
We end this section with an inequality.

Theorem 4.8. With the notation in lemma 4.7 we have(∏n
i=1 a

ai

i

)a−1

(∏n
i=1(ai + k)(ai+k)

)(a+nk)−1 � a

a + nk
(5)

and the equality holds iff a1 = a2 = · · · = an or k = 0.

Proof. Take x = k in lemma 4.7. Then

−
n∑

i=1

ai + k∑n
i=1(ai + nk)

ln
ai + k

a + nk
� −

n∑
i=1

ai

a
ln

ai

a

which is equivalent to (5). �

In particular, taking k = 1 and n = 2, 3, we obtain the following inequalities:

(aabb)
1

a+b

((a + 1)(a+1)(b + 1)(b+1))
1

a+b+2

� a + b

a + b + 2

and
(aabbcc)

1
a+b+c

((a + 1)(a+1)(b + 1)(b+1)(c + 1)(c+1))
1

a+b+c+3

� a + b + c

a + b + c + 3
.

5. Conclusions

DNA sequences and their 3D graphical representation are analysed from algebraic and
combinatorial points of view. By observation of the terminal points of the Z-curves, an
equivalence relation on DNA sequences is introduced, and the number of equivalence classes of
sequences is counted, and the information entropies of their equivalence classes are compared.
All their results are mathematical. We wish to find their applications in biology.
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